Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 710
Filter
1.
Int. j. morphol ; 42(1): 173-184, feb. 2024.
Article in English | LILACS | ID: biblio-1528836

ABSTRACT

SUMMARY: Calcium-activated chloride channel regulator 1 (CLCA1) is associated with cancer progression. The expression and immunologic function of CLCA1 in stomach adenocarcinoma (STAD) remain unclear. In this investigation, the expression of CLCA1 in STAD tissues and its involvement in the progression and immune response of STAD were examined using databases such as cBioPortal, TISIDB, and UALCAN. In order to validate the expression level of CLCA1 protein in gastric adenocarcinoma, thirty clinical tissue specimens were gathered for immunohistochemical staining. The findings indicated a downregulation of CLCA1 in STAD patients, which was correlated with race, age, cancer grade, Helicobacter pylori infection, and molecular subtype. Through the examination of survival analysis, it was identified that diminished levels of CLCA1 within gastric cancer cases were linked to decreased periods of post-progression survival (PPS), overall survival (OS), and first progression (FP) (P<0.05). The CLCA1 mutation rate was lower in STAD, but the survival rate was higher in the variant group. The correlation between the expression level of CLCA1 and the levels of immune infiltrating cells in STAD, as well as the immune activating molecules, immunosuppressive molecules, MHC molecules, chemokines, and their receptor molecules, was observed. Gene enrichment analysis revealed that CLCA1 may be involved in STAD progression through systemic lupus erythematosus (SLE), proteasome, cell cycle, pancreatic secretion, and PPAR signaling pathways. In summary, CLCA1 is anticipated to function as a prognostic marker for patients with STAD and is linked to the immunization of STAD.


El regulador 1 del canal de cloruro activado por calcio (CLCA1) está asociado con la progresión del cáncer. La expresión y la función inmunológica de CLCA1 en el adenocarcinoma de estómago (STAD) aún no están claras. En esta investigación, se examinó la expresión de CLCA1 en tejidos STAD y su participación en la progresión y respuesta inmune de STAD utilizando bases de datos como cBioPortal, TISIDB y UALCAN. Para validar el nivel de expresión de la proteína CLCA1 en el adenocarcinoma gástrico, se recolectaron treinta muestras de tejido clínico para tinción inmunohistoquímica. Los hallazgos indicaron una regulación negativa de CLCA1 en pacientes con STAD, que se correlacionó con la raza, la edad, el grado del cáncer, la infección por Helicobacter pylori y el subtipo molecular. Mediante el examen del análisis de supervivencia, se identificó que los niveles reducidos de CLCA1 en los casos de cáncer gástrico estaban relacionados con períodos reducidos de supervivencia posterior a la progresión (PPS), supervivencia general (OS) y primera progresión (FP) (P <0,05). La tasa de mutación CLCA1 fue menor en STAD, pero la tasa de supervivencia fue mayor en el grupo variante. Se observó la correlación entre el nivel de expresión de CLCA1 y los niveles de células inmunes infiltrantes en STAD, así como las moléculas activadoras inmunes, moléculas inmunosupresoras, moléculas MHC, quimiocinas y sus moléculas receptoras. El análisis de enriquecimiento genético reveló que CLCA1 puede estar involucrado en la progresión de STAD a través del lupus eritematoso sistémico (LES), el proteasoma, el ciclo celular, la secreción pancreática y las vías de señalización de PPAR. En resumen, se prevé que CLCA1 funcione como un marcador de pronóstico para pacientes con STAD y está vinculado a la inmunización de STAD.


Subject(s)
Humans , Stomach Neoplasms/metabolism , Adenocarcinoma/metabolism , Chloride Channels/metabolism , Prognosis , Stomach Neoplasms/immunology , Immunohistochemistry , Adenocarcinoma/immunology , Biomarkers, Tumor , Survival Analysis , Chloride Channels/genetics , Chloride Channels/immunology , Computational Biology , Mutation
2.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 176-185, 2024.
Article in Chinese | WPRIM | ID: wpr-1006283

ABSTRACT

In order to promote the innovative application of Sanjiao theory and Yingwei theory, this paper tries to apply the ''Sanjiao-Yingwei'' Qi transformation theory to the treatment of tumor diseases, integrating it with T cell exhaustion mechanism to elaborate on its scientific connotation and using network pharmacology and bioinformatics to elucidate the correlation between the anti-tumor mechanism of ''Sanjiao-Yingwei'' Qi transformation and T cell exhaustion. The ''Sanjiao-Yingwei'' Qi transformation function is closely related to the immunometabolic ability of the human body, and the ''Sanjiao-Yingwei'' Qi transformation system constitutes the immunometabolic exchange system within and outside the cellular environment. Cancer toxicity is generated by the fuzzy Sanjiao Qi, and the long-term fuzzy Sanjiao Qi is the primary factor leading to T cell exhaustion, which is related to the long-term activation of T cell receptors by the high tumor antigen load in the tumor microenvironment. Qi transformation malfunction of the Sanjiao produces phlegm and collects stasis, which contributes to T cell exhaustion and is correlated with nutrient deprivation, lipid accumulation, and high lactate levels in the immunosuppressed tumor microenvironment, as well as with the release of transforming growth factor-β and upregulated expression of programmed death receptor-1 by tumor-associated fibroblasts and platelets in the tumor microenvironment. Ying and Wei damage due to Sanjiao Qi transformation malfunction is similar to the abnormal manifestations such as progressive loss of exhausted T cell effector function and disturbance of cellular energy metabolism. Guizhi decoction, Shengming decoction, and Wendan decoction can correct T cell exhaustion and exert anti-tumor effects through multi-target and multi-pathways by regulating ''Sanjiao-Yingwei'' Qi transformation, and hypoxia inducible factor-1α (HIF-1α) may be one of the main pathways to correct T cell exhaustion. It was found that HIF-1α may be one of the important prognostic indicators in common tumors by bioinformatics. The use of the ''Sanjiao-Yingwei'' Qi transformation method may play an important part in improving the prognosis of tumor patients in clinical practice.

3.
Acta Pharmaceutica Sinica ; (12): 253-264, 2024.
Article in Chinese | WPRIM | ID: wpr-1005443

ABSTRACT

Cellulose synthase (CesA), one of the key enzymes in the biosynthesis of cellulose in plants, plays an important role in plant growth and plant resistance. In this study, a total of 21 AsCesA genes from Aquilaria sinensis were systematically identified and the physico-chemical characteristics were analyzed based on genome database and bioinformatical methods. The phylogenetic tree was constructed and the gene location on chromosome, cis-acting elements in the 2 000 basepairs upstream regulatory regions and conservative motifs were analyzed. The AsCesA proteins were mainly located on the plasma membrane. The number of amino acids of the proteins ranged from 390 to 1 261. The isoelectric point distributed from 5.67 to 8.86. All of the 21 AsCesA proteins possessed the transmembrane domains, the number of which was from 6 to 8. The genes were classified into 3 groups according to the phylogenetic relationship. Obvious differences were observed in motif composition in genes from different groups. However, motif2, motif6, motif7 and motif10 were observed in all of AsCesA proteins. Analysis of cis-acting elements indicated that AsCesA genes family has cis-acting elements related to plant hormones, abiotic stresses, and biological processes. Seven AsCesA genes with differential expression were selected according to the calli transcriptome data induced by NaCl at different times and their expression levels under different abiotic stresses were analyzed by quantitative real-time PCR. The results indicated that salt, low temperature, drought, and heavy metal stresses could affect the expression level of AsCesA genes, and the abundance of AsCesA1, AsCesA3 and AsCesA20 showed a significant change, implying their potential important roles to the abiotic stresses. The accumulation pattern of cellulose content under different abiotic stresses was similar to the expression trend of AsCesA genes. Our results provide valuable insights into the role of cellulose synthase in A.sinensis in plant defense.

4.
Organ Transplantation ; (6): 90-101, 2024.
Article in Chinese | WPRIM | ID: wpr-1005238

ABSTRACT

Objective To screen key autophagy-related genes in alcoholic hepatitis (AH) and investigate potential biomarkers and therapeutic targets for AH. Methods Two AH gene chips in Gene Expression Omnibus (GEO) and autophagy-related data sets obtained from MSigDB and GeneCards databases were used, and the key genes were verified and obtained by weighted gene co-expression network analysis (WGCNA). The screened key genes were subject to gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), protein-protein interaction (PPI) and immune infiltration analyses. Messenger RNA (mRNA)- microRNA (miRNA) network was constructed to analyze the expression differences of key autophagy-related genes during different stages of AH, which were further validated by real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) in the liver tissues of AH patients and mice. Results Eleven autophagy-related genes were screened in AH (EEF1A2, CFTR, SOX4, TREM2, CTHRC1, HSPB8, TUBB3, PRKAA2, RNASE1, MTCL1 and HGF), all of which were up-regulated. In the liver tissues of AH patients and mice, the relative expression levels of SOX4, TREM2, HSPB8 and PRKAA2 in the AH group were higher than those in the control group. Conclusions SOX4, TREM2, HSPB8 and PRKAA2 may be potential biomarkers and therapeutic targets for AH.

5.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 152-160, 2024.
Article in Chinese | WPRIM | ID: wpr-1003777

ABSTRACT

ObjectiveThe biosynthetic pathways of benzylisoquinoline alkaloids(BIAs) in Nelumbo nucifera are of great theoretical and economic value. In this paper, N. nucifera O-methyltransferase(NnOMT) and N. nucifera N-methyltransferase(NnNMT) gene families were identified and analyzed by bioinformatics in order to facilitate the biosynthetic pathway of BIAs in N. nucifera. MethodBased on the whole genome of N. nucifera, UniPort and National Center for Biotechnology Information(NCBI) databases were used to identify the NnOMT and NnNMT gene families of N. nucifera, and analyze their physicochemical properties and subcellular localization, then TBtools, MEME, MEGA 11.0, FigTree 1.4.4 and other tools were used to analyze the phylogeny, sequence characteristics, gene structure, functional annotation and cis-acting elements of NnOMT and NnNMT genes identified in the previous stage. ResultA total of 61 NnOMT and NnNMT genes were identified in this paper, the number of amino acids encoded by these genes ranged from 168 aa to 580 aa, the isoelectric point ranged from 4.76 to 9.16, and the relative molecular weight ranged from 18 699.52 Da to 64 934.53 Da, most of which showed acidic and mostly hydrophilic proteins. There were 10 conserved motifs, Kyoto Encyclopedia of Genes and Genomes(KEGG) analysis enriched a total of 12 pathways, including metabolism, biosynthesis of phenylpropane and isoquinoline alkaloids, etc. And Visualization of Gene Ontology(GO) enrichment results showed that 61 NnOMT and NnNMT genes were annotated to 32 items, which included 16 molecular functions[such as reduced nicotinamide adenine dinucleotide(NADH) activity and exopeptidase activity] and 16 biological processes(such as metabolic process of carbon tetrachloride, anaerobic carbon tetrachloride metabolic process and responses to exogenous biological stimuli). There were a variety of cis-acting elements in the promoter regions of NnOMT and NnNMT genes, mainly promoter and enhancer regions element, light responsive element and methyl jasmonate responsive element. ConclusionIn this study, a comprehensive bioinformatics analysis of 61 NnOMT and NnNMT genes is carried out based on the genome data of N. nucifera, which lays a foundation for research on the gene structure and function of NnOMT and NnNMT gene families, and provides a reference for biosynthetic pathway elucidation of BIAs in N. nucifera.

6.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 142-151, 2024.
Article in Chinese | WPRIM | ID: wpr-1003776

ABSTRACT

ObjectiveBioinformatics methods were used to systematically identify the Salvia miltiorrhiza terpenoid synthase (SmTPS) gene family members and predict their functions from the perspective of the genome. MethodThe genome and transcriptome data of S. miltiorrhiza, Arabidopsis thaliana, and tomato were obtained from the national genomics data center (NGDC), national center for biotechnology information (NCBI), the Arabidopsis information resource (TAIR), and tomato functional genomics database (TFGD), and the whole genome identification and bioinformatics analysis of the SmTPS gene family member were carried out with the help of Perl language programming, Tbtools, and other bioinformatics tools. ResultA total of 52 TPS gene family members were identified, and they were distributed on eight chromosomes of S. miltiorrhiza. Their coding amino acid number was 207-822 aa. The isoelectric points were 4.76-9.16. The molecular mass was 24.11-94.81 kDa, and all members are hydrophilic proteins. Gene structure analysis showed that there were significant differences in the number of introns among different subfamilies. The number of introns in 72.6% of TPS-a, b, and g subfamilies was 6, and that in 88.9% of TPS-c and e/f subfamilies was more than 10. Protein motifs were conserved among TPS subfamilies. The analysis of promoter cis-acting elements showed that all promoters of the SmTPSs contained a large number of light-responsive elements, and most of them had hormone-responsive elements. Gene expression analysis showed that SmTPS gene family members exhibited tissue-specific expression, and 24 of them responded to exogenous methyl jasmonate. ConclusionBased on the published S. miltiorrhiza genome, 52 SmTPS gene family members were identified, and their functions were predicted based on the phylogenetic analysis and expression patterns. This paper provides reference information for the further biosynthesis pathway and regulatory mechanism analysis of terpenoids in S. miltiorrhiza.

7.
Int. j. morphol ; 41(6): 1764-1774, dic. 2023. ilus
Article in English | LILACS | ID: biblio-1528797

ABSTRACT

SUMMARY: Colon adenocarcinoma (COAD) is a prevalent disease worldwide, known for its high mortality and morbidity rates. Despite this, the extent of investigation concerning the correlation between COAD's CLCA1 expression and immune cell infiltration remains insufficient. This study seeks to examine the expression and prognosis of CLCA1 in COAD, along with its relationship to the tumor immune microenvironment. These findings will offer valuable insights for clinical practitioners and contribute to the existing knowledge in the field. In order to evaluate the prognostic significance of CLCA1 in individuals diagnosed with colorectal cancers, we conducted a comprehensive analysis using univariate and multivariate Cox regression models along with receiver operating characteristic curve (ROC) analysis. This study was performed on the patient data of COAD obtained from The Cancer Genome Atlas (TCGA) database. Nomograms were developed to anticipate CLCA1 prognostic influence. Furthermore, the CLCA1 association with tumor immune infiltration, immune checkpoints, immune checkpoint blockade (ICB) response, interaction network, and functional analysis of CLCA1-related genes was analyzed. We found that Colon adenocarcinoma tissues significantly had decreased CLCA1 expression compared to healthy tissues. Furthermore, the study revealed that the group with high expression of CLCA1 demonstrated a significantly higher overall survival rate (OS) as compared to the group with low expression. Multivariate and Univariate Cox regression analysis revealed the potential of CLCA1 as a standalone risk factor for COAD. These results were confirmed using nomograms and ROC curves. In addition, protein-protein interaction (PPI) network analysis and functional gene enrichment showed that CLCA1 may be associated with functional activities such as pancreatic secretion, estrogen signaling and cAMP signaling, as well as with specific immune cell infiltration. Therefor, as a new independent predictor and potential biomarker of COAD, CLCA1 plays a crucial role in the advancement of colon cancer.


El adenocarcinoma de colon (COAD) es una enfermedad prevalente a nivel mundial, conocida por sus altas tasas de mortalidad y morbilidad. Sin embargo, el alcance de la investigación sobre la correlación entre la expresión de CLCA1 de COAD y la infiltración de células inmunes sigue siendo insuficiente. Este estudio busca examinar la expresión y el pronóstico de CLCA1 en COAD, junto con su relación con el microambiente inmunológico del tumor. Estos hallazgos ofrecerán conocimientos valiosos para los profesionales clínicos y contribuirán al conocimiento existente en el campo. Para evaluar la importancia de pronóstico de CLCA1 en personas diagnosticadas con cáncer colorrectal, realizamos un análisis exhaustivo utilizando modelos de regresión de Cox univariados y multivariados junto con un análisis de la curva característica operativa del receptor (ROC). Este estudio se realizó con los datos de pacientes de COAD obtenidos de la base de datos The Cancer Genome Atlas (TCGA). Se desarrollaron nomogramas para anticipar la influencia pronóstica de CLCA1. Además, se analizó la asociación de CLCA1 con la infiltración inmunitaria tumoral, los puntos de control inmunitarios, la respuesta de bloqueo de los puntos de control inmunitarios (ICB), la red de interacción y el análisis funcional de genes relacionados con CLCA1. Descubrimos que los tejidos de adenocarcinoma de colon tenían una expresión significativamente menor de CLCA1 en comparación con los tejidos sanos. Además, el estudio reveló que el grupo con alta expresión de CLCA1 demostró una tasa de supervivencia general (SG) significativamente mayor en comparación con el grupo con baja expresión. El análisis de regresión de Cox multivariado y univariado reveló el potencial de CLCA1 como factor de riesgo independiente de COAD. Estos resultados se confirmaron mediante nomogramas y curvas ROC. Además, el análisis de la red de interacción proteína- proteína (PPI) y el enriquecimiento de genes funcionales mostraron que CLCA1 puede estar asociado con actividades funcionales como la secreción pancreática, la señalización de estrógenos y la señalización de AMPc, así como con la infiltración de células inmunes específicas. Por lo tanto, como nuevo predictor independiente y biomarcador potencial de COAD, CLCA1 desempeña un papel crucial en el avance del cáncer de colon.


Subject(s)
Humans , Male , Female , Adult , Middle Aged , Aged , Aged, 80 and over , Young Adult , Adenocarcinoma/immunology , Colonic Neoplasms/immunology , Chloride Channels/immunology , Prognosis , Immunohistochemistry , Adenocarcinoma/metabolism , Survival Analysis , Multivariate Analysis , Regression Analysis , Colonic Neoplasms/metabolism , Chloride Channels/metabolism , Computational Biology
8.
Int. j. morphol ; 41(6): 1789-1801, dic. 2023. ilus, tab, graf
Article in English | LILACS | ID: biblio-1528808

ABSTRACT

SUMMARY: We investigated the expression and clinical significance of miR-15b-5p in clear cell renal cell carcinoma (RCC) through bioinformatics analysis and experimental verification. The differentially expressed miRNAs were screened in the GEO database. Venn diagram showed that there were 5 up-regulated miRNAs (has-miR-210, has-miR-142-3p, has-miR-142-5p, has-miR-15b-5p, and has-miR-193a-3p) and only 1 down-regulated miRNA (has-miR-532-3p) that were commonly expressed between GSE189331 and GSE16441 datasets. This was further confirmed in TCGA. Further analysis showed that the has-miR-193a-3p, has-miR-142-3p, has- miR-142-5p, and has-miR-15b-5p were closely related to tumor invasion, distant metastasis and survival probability. The expression of miR-15b-5p in ccRCC tissues was significantly higher than that in adjacent normal kidney tissues (P0.05). Following inhibition of miR-15b-5p expression, RCC cells had attenuated proliferation, increased apoptosis, and attenuated migration and invasion. has-miR-15b-5p-WEE1, has-miR-15b-5p-EIF4E, has-miR-15b-5p-PPP2R1B may be three potential regulatory pathways in ccRCC. miR-15b-5p is highly expressed in cancer tissues of ccRCC patients. It may promote proliferation, inhibit apoptosis and enhance cell migration and invasion of RCC cells. The has-miR-15b-5p-WEE1, has-miR-15b-5p-EIF4E, and has-miR-15b-5p-PPP2R1B may be three potential regulatory pathways in ccRCC.


Investigamos la expresión y la importancia clínica de miR-15b-5p en el carcinoma de células renales (CCR) de células claras mediante análisis bioinformático y verificación experimental. Los miARN expresados diferencialmente se examinaron en la base de datos GEO. El diagrama de Venn mostró que había 5 miARN regulados positivamente (has-miR-210, has-miR-142-3p, has-miR-142-5p, has-miR-15b-5p y has-miR-193a-3p). ) y solo 1 miARN regulado negativamente (has-miR-532-3p) que se expresaron comúnmente entre los conjuntos de datos GSE189331 y GSE16441. Esto fue confirmado aún más en TCGA. Un análisis más detallado mostró que has-miR-193a-3p, has-miR-142-3p, has- miR-142-5p y has-miR-15b-5p estaban estrechamente relacionados con la invasión tumoral, la metástasis a distancia y la probabilidad de supervivencia. La expresión de miR-15b-5p en tejidos ccRCC fue significativamente mayor que la de los tejidos renales normales adyacentes (P 0,05). Tras la inhibición de la expresión de miR-15b-5p, las células RCC tuvieron una proliferación atenuada, un aumento de la apoptosis y una migración e invasión atenuadas. has-miR-15b-5p-WEE1, has- miR-15b-5p-EIF4E, has-miR-15b-5p-PPP2R1B pueden ser tres posibles vías reguladoras en ccRCC. miR-15b-5p se expresa altamente en tejidos cancerosos de pacientes con ccRCC. Puede promover la proliferación, inhibir la apoptosis y mejorar la migración celular y la invasión de células RCC. has-miR-15b-5p-WEE1, has- miR-15b-5p-EIF4E y has-miR-15b-5p-PPP2R1B pueden ser tres posibles vías reguladoras en ccRCC.


Subject(s)
Humans , Male , Female , Carcinoma, Renal Cell/pathology , MicroRNAs , Kidney Neoplasms/pathology , Carcinoma, Renal Cell/genetics , Survival Analysis , Cell Movement , Computational Biology , Real-Time Polymerase Chain Reaction , Kidney Neoplasms/genetics , Neoplasm Invasiveness , Neoplasm Metastasis
9.
China Journal of Chinese Materia Medica ; (24): 2368-2378, 2023.
Article in Chinese | WPRIM | ID: wpr-981313

ABSTRACT

This study aims to investigate the expression, prognosis, and clinical significance of C5orf46 in gastric cancer and to study the interaction between the active components of C5orf46 and tarditional Chinese medicine. The ggplot2 package was utilized for differential expression analysis of C5orf46 in gastric cancer tissues and normal tissues. The survival package was used for survival analysis, univariate regression analysis, and multivariate regression analysis. Nomogram analysis was used to assess the connection between C5orf46 expression in gastric cancer and overall survival. The abundance of tumor-infiltrating lymphocytes was calculated by GSVA package. Coremine database, Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP) database, and PubChem database were used to search the potential components corresponding to C5orf46 gene and tarditional Chinese medicine. Molecular docking was performed to explore the binding affinity of potential components to C5orf46. Cell experiments were performed to explore the expression of C5orf46 gene in cells of the blank group, model group, and drug administration groups. As compared with normal tissues, C5orf46 expression was higher in gastric cancer tissues, which had more significant predictive effects in the early stages(T2, N0, and M0). The more advanced the tumor node metastasis(TNM) stage, the higher the C5orf46 expression and the lower the probability of survival of patients with gastric cancer. The expression of C5orf46 positively correlated with the helper T cells1 in gastric cancer and the macrophage infiltration level in gastric cancer, and negatively correlated with B cells, central memory T cells, helper T cells 17, and follicular helper T cells. Seven potential components of C5orf46 were obtained, and three active components were obtained after the screening, which matched five tarditional Chinese medicines, namely, Sojae Semen Nigrum, Jujubae Fructus, Trichosanthis Fructus, Silybi Fructus, and Bambusae Concretio Silicea. Molecular docking revealed that sialic acid and adeno-sine monophosphate(AMP) had a good binding ability to C5orf46. The results of real-time quantitative polymerase chain reaction(RT-qPCR) and Western blot showed that, as compared with the model group, the mRNA and protein expression levels of C5orf46 were significantly lower in the drug administration groups. The lowest expression level was found at the concentration of 40 μmol·L~(-1). The results of this study provide ideas for the clinical development of traditional Chinese medicine compounds for the treatment of gastric cancer as well as other cancers.


Subject(s)
Humans , Stomach Neoplasms/metabolism , Medicine, Chinese Traditional , Molecular Docking Simulation , Prognosis , Computational Biology
10.
Chinese Journal of Biotechnology ; (12): 2897-2913, 2023.
Article in Chinese | WPRIM | ID: wpr-981239

ABSTRACT

MADS-box gene family is a significant transcription factor family that plays a crucial role in regulating plant growth, development, signal transduction, and other processes. In order to study the characteristics of MADS-box gene family in Docynia delavayi (Franch.) Schneid. and its expression during different stages of seed germination, this study used seedlings at different stages of germination as materials and screened MADS-box transcription factors from the transcriptome database of D. delavayi using bioinformatics methods based on transcriptome sequencing. The physical and chemical properties, protein conservative motifs, phylogenetic evolution, and expression patterns of the MADS-box transcription factors were analyzed. Quantitative real-time PCR (qRT-PCR) was used to verify the expression of MADS-box gene family members during different stages of seed germination in D. delavayi. The results showed that 81 genes of MADS-box gene family were identified from the transcriptome data of D. delavayi, with the molecular weight distribution ranged of 6 211.34-173 512.77 Da and the theoretical isoelectric point ranged from 5.21 to 10.97. Phylogenetic analysis showed that the 81 genes could be divided into 15 subgroups, among which DdMADS27, DdMADS42, DdMADS45, DdMADS46, DdMADS53, DdMADS61, DdMADS76, DdMADS77 and DdMADS79 might be involved in the regulation of ovule development in D. delavayi. The combination of the transcriptome data and the qRT-PCR analysis results of D. delavayi seeds indicated that DdMADS25 and DdMADS42 might be involved in the regulation of seed development, and that DdMADS37 and DdMADS38 might have negative regulation effects on seed dormancy. Previous studies have reported that the MIKC* subgroup is mainly involved in regulating flower organ development. For the first time, we found that the transcription factors of the MIKC* subgroup exhibited a high expression level at the early stage of seed germination, so we speculated that the MIKC* subgroup played a regulatory role in the process of seed germination. To verify the accuracy of this speculation, we selected DdMADS60 and DdMADS75 from the MIKC* subgroup for qRT-PCR experiments, and the experimental results were consistent with the expression trend of transcriptome sequencing. This study provides a reference for further research on the biological function of D. delavayi MADS-box gene family from the perspective of molecular evolution.


Subject(s)
MADS Domain Proteins/metabolism , Phylogeny , Gene Expression Regulation, Plant , Genes, Plant , Transcription Factors/genetics , Plant Proteins/metabolism , Gene Expression Profiling
11.
Chinese Journal of Biotechnology ; (12): 2861-2873, 2023.
Article in Chinese | WPRIM | ID: wpr-981237

ABSTRACT

Auto-inhibited Ca2+-ATPase (ACA) is one of the Ca2+-ATPase subfamilies that plays an important role in maintaining Ca2+ concentration balance in plant cells. To explore the function and gene expression pattern of the RcACA gene family in castor, bioinformatics analysis was used to identify the members of the RcACA gene family in castor. The basic physical and chemical properties, subcellular location, protein secondary and tertiary structure, conserved domain, conserved motif, gene structure, chromosome location and collinear relationship, as well as the evolutionary characteristics and promoter cis-acting elements were predicted and analyzed. The expression pattern of the RcACA gene under abiotic stress was analyzed by expression (fragments per kilobase of exon model per million mapped fragments, FPKM) in castor transcriptome data. The results showed that 8 RcACA gene family members were identified in castor, acidic proteins located in the plasma membrane. In the secondary structure of all proteins, the α-helix and random coil is more; the RcACA genes were clustered into three categories, and the design of the genes in the same category was similar to the conserved motif. Both of them had four typical domains, RcACA3-RcACA8 had a Ca2+-ATPase N-terminal autoinhibitory domain. The RcACA gene is mostly located on the long arm of the chromosome and has 2 pairs of collinear relationships. There are more light response elements but fewer hormone-induced elements located upstream of the RcACA coding region. Interspecific clustering showed that the evolution of ACA genes among species was conservative. Tissue expression pattern analysis showed that RcACA genes showed apparent tissue expression specificity, and most of the genes showed the highest expression level in male flowers. Expression analysis under abiotic stress showed that RcACA2-RcACA8 were up-regulated under high salt and drought stress, and RcACA1 was up-regulated at 0-24 h under low-temperature stress, indicating that RcACA genes positively responded to abiotic stresses. The above results provide a theoretical basis for exploring the role of the RcACA gene in castor growth, development and stress response.


Subject(s)
Genome, Plant , Stress, Physiological/genetics , Transcriptome , Promoter Regions, Genetic , Phylogeny , Plant Proteins/metabolism , Gene Expression Regulation, Plant
12.
Journal of Chinese Physician ; (12): 348-354,359, 2023.
Article in Chinese | WPRIM | ID: wpr-992306

ABSTRACT

Objective:To explore the key targets and mechanism of Bielong Ruangan decoction in the treatment of liver cancer based on network pharmacology and molecular docking.Methods:Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) database, PubChem database and PharmMapper database were used to search and screen the chemical components and related targets of Bielong Ruangan decoction and the targets of liver cancer diseases. The network diagram of " Bielong Ruangan decoction-traditional Chinese medicine-active ingredient-predicted target-disease" was constructed; Protein-protein interaction (PPI) network were analyzed through String database; gene ontology (GO) enrichment analysis was performed through WebGestalt database; Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was carried out through KEGG Orthology Based Annotation System (KOBAS) database; Molecular docking of the active components and core target proteins of Bielong Ruangan decoction was carried out by using PyMOL, Auto DockVina and other software.Results:Bielong Ruangan decoction had 67 active components, 154 liver cancer targets and 244 pathways. According to the analysis of network pharmacology, Bielong Ruangan decoction may play an anti-cancer role through key targets such as epidermal growth factor receptor (EGFR), mitogen activated protein kinase 1 (MAPK1), estrogen receptor 1 (ESR1), MAPK8, serine threonine protein kinase 1 (AKT1), MAPK14, cysteine protease 3 (CASP3), cyclin-dependent kinase 2 (CDK2), bone morphogenetic protein 2 (BMP2), aldose reductase (AKR1B1) and other key targets. KEGG enrichment analysis showed that the treatment of liver cancer by Bielong Ruangan decoction involved the regulation of vascular endothelial growth factor (VEGF) signaling pathway, tumor necrosis factor (TNF) signaling pathway, thyroid hormone signaling pathway, T cell receptor signaling pathway and other pathways. The results of molecular docking showed that the binding energy of all compounds to protein was less than -5.6 kcal/mol, indicating that each compound and each protein could bind well.Conclusions:Bielong Ruangan decoction participates in the treatment of liver cancer through " multi-component, multi-target and multi-channel" ways, and plays an anti-cancer role mainly by regulating the proliferation and invasion of tumor cells and tumor inflammatory microenvironment.

13.
Chinese Journal of Behavioral Medicine and Brain Science ; (12): 714-720, 2023.
Article in Chinese | WPRIM | ID: wpr-992157

ABSTRACT

Objective:To investigate the regulatory role of defferentially expressed LOC107987438 in the pathogenesis of depressive disorder and provide a theoretical basis for its clinical application in depressive disorder.Methods:Differential expression of LOC107987438 was verified by quantitative real-time polymerase chain reaction(qRT-PCR)in peripheral blood monocular cells(PBMCs)of 60 patients with depressive disorder and 60 health controls. In addition, its diagnostic value was assessed by receiver operating characteristic(ROC)curves. Based on the ceRNA mechanism of lncRNA, the miRDB database was applied to predict the target miRNAs of LOC107987438, and the miRNAs with target score ≥ 80 among them were screened out.The screened miRNAs were then used to predict their potential target mRNAs through four databases which were TargetScan 8.0, miRTarBase, mirDIP and miRPathDB. Moreover, the predicted target mRNAs were annotated for gene ontology(GO)function annotation and tokoyo encyclopedia of genes and genomes(KEGG) pathway enrichment analysis via ClusterProfiler 4.0.5 package of R 4.1.1. Finally, a protein-protein interaction network was constructed using the STRING 11.5 platform to retrieve the interacting genes.Results:The qRT-PCR results showed that normalized expression of LOC107987438 in PBMCs of patients with depressive disorder was higher than that in health controls(depressive disorder: 2.084±1.357, health controls: 1.000±0.660, P<0.001). The ROC curve results showed that the area under curves(AUC)of LOC107987438 was 0.759(95% CI: 0.675-0.842, P<0.05), indicating its high potential diagnostic value. Bioinformatics analysis showed that hsa-miR-4670-3p, hsa-miR-619-3p, hsa-miR-6721-5p and hsa-miR-297 were the miRNAs with high bindings to LOC107987438. The results of KEGG signaling pathway enrichment revealed that hypoxia-inducible factor 1(HIF-1)signaling pathway, phosphatidylinositol 3-kinase-AKT(PI3K-Akt) signaling pathway and erythroblastic oncogene B(ErbB) signaling pathway were closely associated with depressive disorder. Among the top ten key genes screened by the protein-protein interaction network, kirsten rats arcomaviral oncogene homolog(KRAS), androgen receptor(AR), cyclic-AMP response binding protein1(CREB1), insulin-like growth factor 1(IGF1), cyclin-dependent kinase inhibitor 1B(CDKN1B) and calcium/calmodulin-dependent protein kinase type Ⅱ alpha(CAMK2A)were strongly associated with depressive disorder. Conclusion:The establishment of ceRNA regulatory network of LOC107987438 provides a theoretical basis for exploring the pathophysiology of depressive disorders.

14.
Journal of Modern Urology ; (12): 247-253, 2023.
Article in Chinese | WPRIM | ID: wpr-1006124

ABSTRACT

【Objective】 To explore the correlation between CSAG1 expression and the prognosis and tumor-infiltrating lymphocytes in renal clear cell carcinoma (RCCC), and to predict the survival and tumor progression. 【Methods】 The gene expression profiles and clinical information of CSAG1 were downloaded from the Cancer Genome Atlas (TCGA). Based on the differential mRNA expression, GO annotation and KEGG pathway analysis were performed. The relationship between CSAG1 and tumor immune infiltration was assessed with Tumor Immunoassay Resource (Timer 2.0) database. The mRNA expression of CSAG1 in human RCCC specimens was validated with qRT-PCR. 【Results】 CSAG1 expression was significantly higher in RCCC tissues than in normal tissues (P<0.05). The qRT-PCR results revealed that the mRNA level of CSAG1 was consistent with that predicted by bioinformatic analysis. The KEGG analysis and GO annotation indicated high GSAG1 expression in RCCC was related to transmembrane transport, tricarboxylic acid cycle and lysosome. CSAG1 expression was positively related to the infiltration of pDC, aDC, CD8+ T cells, cytotoxic cells, TFH, TH1 cells, Tem, NK CD56dm cells, Treg and T cells, but negatively correlated with macrophage infiltration. 【Conclusion】 CSAG1 may be associated with poor prognosis of RCCC and become a potential immunotherapy target.

15.
Journal of Modern Urology ; (12): 519-528, 2023.
Article in Chinese | WPRIM | ID: wpr-1006051

ABSTRACT

【Objective】 To investigate the expression of Kinesin family member 14 (KIF14), and its correlation with clinical prognosis and immune cell infiltration of clear cell renal cell carcinoma (ccRCC). 【Methods】 The correlation between KIF14 expression in ccRCC and different clinicopathological features were analyzed with TCGA, GEO and Ualcan databases. The correlation between KIF14 expression and prognosis was analzyed with Kaplan-Meier method. The correlation between KIF14 expression and immune cell infiltration was analzyed with TIMER. The protein-protein interaction network of KIF14 was conducted with Genemania. The co-expression genes of KIF14 in TCGA-KIRC were picked out in Linkedomics database and were used to perform GO annotations and KEGG pathway enrichment analysis with R software. The biological functions of KIF14 were verified with in vitro functional assay. 【Results】 KIF14 was highly expressed in ccRCC tissue and was positively correlated with clinical stage, pathological grade, and lymphatic metastasis, but negatively correlated with clinical prognosis. KIF14 expression was an independent risk factor for overall survival of ccRCC patients. GO annotations showed that KIF14 was involved in DNA replication, nuclear division, organelle fission, and cell adhesion. KEGG pathway enrichment analysis showed that KIF14 participated in cell cycle and p53 signaling pathway. Genemania analysis indicated KIF14 interacted with CENPE, CIT, KIF23, and other proteins. Timer showed that KIF14 was positively correlated with immune cell infiltration. Knockdown of KIF14 expression suppressed cell proliferation, migration, and invasion of ccRCC. 【Conclusions】 KIF14 may serve as a novel prognostic marker and a potential therapeutic target of clear cell renal cell carcinoma.

16.
Journal of Xi'an Jiaotong University(Medical Sciences) ; (6): 100-106, 2023.
Article in Chinese | WPRIM | ID: wpr-1005508

ABSTRACT

【Objective】 To explore the differentially expressed genes in normal prostate and prostate cancer (PCa) tissues based on bioinformatics and screen out potential biomarkers for PCa, so as to provide scientific basis for later clinical medicine. 【Methods】 Three gene chip datasets of GSE55945, GSE46602 and GSE69223 were downloaded from GEO database, and differentially expressed genes (DEGs) were screened by the OmicStudio tools, and protein-protein interaction network (PPI) of DEGs was constructed by STRING. After Cytoscape was imported, CytoHubba plug-in was used to screen the top 30 genes in MCC score as key genes (Hub gene). DAVID was used for GO and KEGG enrichment analysis of Hub gene, and GraphPad Prism software was used to draw ROC curve. GEPIA database was used to verify the key genes, and survival analysis was further carried out. UALCAN was used to verify the correlation between the expression of key genes and Gleason grade of PCa. 【Results】 Three data sets (GSE55945, GSE46602 and GSE69223) obtained 428, 727 and 1285 differentially expressed genes, respectively. The Venn diagram shows that the three datasets contain 105 DEGs. Among 105 PPI networks corresponding to DEGs, the top 30 genes with MCC score were selected as Hub genes. The biological processes involved mainly include the positive regulation of protein kinase B signal, cell differentiation, positive regulation of transcription, negative regulation of transforming growth factor β receptor signaling pathway, positive regulation of cell migration, etc. The pathways involved are adhesion plaque, estrogen signaling pathway, etc. ROC curve results showed that the diagnostic ability of 9 genes in 3 data sets was statistically significant, and 9 Hub genes were CAV1, KDR, CAV2, TGFBR1, SLC7A11, GSTM2, GSTM3, GSTM5 and MYO6. Nine Hub genes were verified by GEPIA website, among which CAV1, KDR, CAV2, TGFBR1, GSTM2, GSTM3 and GSTM5 showed low expression in PCa, while SLC7A11 and MYO6 showed high expression in PCa. Survival analysis suggested that high GSTM5 expression prolonged OS in PCa patients. UALCAN results showed that the expression of GSTM5 gene was significantly correlated with Gleason grade, and the expression of GSTM5 gene decreased with the increase of Gleason score. 【Conclusion】 Hub genes CAV1, KDR, CAV2, TGFBR1, GSTM2, GSTM3 and GSTM5 are low expression in PCa, while SLC7A11 and MYO6 are high expression in PCa. GSTM5 gene is related to the survival rate of PCa. The expression of GSTM5 decreased with the increase of Gleason score, which indicated that GSTM5 may be a potential biomarker for PCa.

17.
Acta Pharmaceutica Sinica ; (12): 2364-2374, 2023.
Article in Chinese | WPRIM | ID: wpr-999134

ABSTRACT

The main sources of natural drugs include various biological species such as plants, animals, and microorganisms. The accurate identification of these species is the bedrock of natural drug development. We propose a novel method of species identification in this paper: analysis of whole-genome (AGE), a molecular diagnostic method used to identify species by finding species-specific sequences from the whole genome and precisely recognizing the specific target sequences. We elaborate that the principle for species identification based on AGE is that the genome sequences of diverse species must differ and divide the implementation strategy of the method into two levels of research and application. Based on our analysis of its characteristics, the method would have the potential advantages of reliable principle, high specificity, and wide applicability. Moreover, three crucial concerns related to building method systems including genome acquisition, bioinformatics analysis, and database construction, are further discussed. In summary, we offer theoretical underpinnings and methodological guidance for the development of bioinformatics software and commercial kits, indicating AGE has great application potential in objects, subjects, and industries.

18.
Chinese Journal of Biologicals ; (12): 1313-1318+1323, 2023.
Article in Chinese | WPRIM | ID: wpr-998383

ABSTRACT

@#Objective To predict and analyze the physical and chemical properties,structure,function,protein interaction and homology of SLC33A1 gene based on bioinformatics so as to provide a reference for further study on the function of SLC33A1.Methods A variety of bioinformatics tools were used to predict the physical and chemical properties,hydrophilicity,hydrophobicity,signal peptide structure,transmembrane structure,subcellular localization,three dimensional spatial structure,post-translational modification sites and protein-protein interaction of SLC33A1.Results SLC33A1 was a neutral,stable and hydrophobic protein without signal peptide sequence,which was mainly distributed in cell membrane and membrane structural organelle,with a probability of 13. 0% in vesicle membrane. There were 11 transmembrane domains,6 extracellular domains and 6 intracellular domains in SLC33A1 sequence. The tertiary structure of SLC33A1 was elastic and stable,which had 2 N-glycosylation sites,2 O-glycosylation sites and 13 potential protein phosphorylation sites. SLC33A1 interacted with 7 proteins such as ATM with high confidence,which was mainly involved in the negative regulation of inositol-requiring enyzme 1(IRE1)-mediated unfolded protein response,the respon-ses of glycosphingolipid,sialylation and cells to γ ray as well as the negative regulation of endoplasmic reticulum stress response.Conclusion The nature and function of SLC33A1 were investigated by various software,which provided theoretical references and ideas for further research on new anticancer targets in the future.

19.
Digital Chinese Medicine ; (4): 257-271, 2023.
Article in English | WPRIM | ID: wpr-997647

ABSTRACT

@#[Objective[ To analyze the main syndrome types, medication rules, and core prescription characteristics of traditional Chinese medicine (TCM) in the treatment of metabolism-associated fatty liver disease (MAFLD), and to predict the anti-MAFLD mechanism of core formula, so as to provide references for the clinical application of TCM and the development of new drugs. [Methods] Literature research on TCM in treating MAFLD was retrieved from China National Knowledge Infrastructure (CNKI), China Science and Technology Journal Database (VIP), and Wanfang Database since the establishment of the database to July 2022. Excel 2019 and Chinese Medicine Inheritance Computing Platform (V3.0) were used for frequency analysis, association rule analysis, and cluster analysis of effective prescriptions. The key components, targets, and action pathways of anti-MAFLD core formulas were predicted by network pharmacology. Finally, the interactions between the obtained core components and their core targets were verified reversely by molecular docking technology. [Results] A total of 218 articles were screened and selected, including 352 prescriptions, involving 270 traditional Chinese herbs. The drugs were used a total of 3 901 times, and a total of 10 915 cases were collected, among which the prevalence rate was higher in males. The main types of TCM syndrome included intermingled phlegm and blood stasis syndrome, liver depression and spleen deficiency syndrome, and damp-heat in liver and gallbladder syndrome, among which Shanzha (Crataegi Fructus), Danshen (Salviae Miltiorrhizae Radix et Rhizoma), Fuling (Poria), Zexie (Alismatis Rhizoma), Chaihu (Bupleuri Radix), and Baizhu (Atractylodis Macrocephalae Rhizoma) were the most frequently used. The properties of Chinese medicine primarily encompassed thermal characteristics, with a predominant emphasis on cold and warm; the flavors of herbs were predominantly characterized by bitterness and sweetness, while the majority exhibited tropism towards the spleen and liver meridians. The drugs were primarily classified based on their efficacy in tonifying deficiencies, promoting diuresis and moistening, enhancing blood circulation and removing blood stasisheat-clearing, etc. The association rules were employed to derive a set of 20 core drug pairs, while cluster analysis was utilized to identify three distinct groups of core drug combinations. Network pharmacological showed that the main components of the core formula “Shanzha (Crataegi Fructus) - Danshen (Salviae Miltiorrhizae Radix et Rhizoma) - Zexie (Alismatis Rhizoma) - Chaihu (Bupleuri Radix) - Fuling (Poria)” in the treatment of MAFLD were quercetin, apigenin, puerarin, luteolin, ursolic acid, kaempferol, tanshinone IIA, emodin, paeonol, etc., which involved RAC-alpha serine/threonine-protein kinase 1 (AKT1), cellular tumor antigen p53 (TP53), interleukin (IL)-6, IL-1β, signal transducer and activator of transcription 3 (STAT3), epidermal growth factor receptor (EGFR), peroxisome proliferative activated receptor gamma (PPARG), and other key targets. The molecular docking results showed that the core components had good binding to lipid and atherosclerosis, and phosphatidylinositol 3 kinase (PI3K)/AKT signaling pathway-associated proteins. [Conclusion] The main principles of TCM for the treatment of MAFLD involve soothing the liver and strengthening the spleen, eliminating phlegm and dampness, clearing heat and dampness, as well as promoting blood circulation and removing blood stasis. The core formula may exert anti-MAFLD effects mediated through multiple components, targets, and signaling pathways. This study establishes a theoretical foundation for the clinical application of TCM in the treatment of MAFLD, and serves as a reference for further exploration of new drugs against MAFLD.

20.
Chinese Journal of Schistosomiasis Control ; (6): 358-365, 2023.
Article in Chinese | WPRIM | ID: wpr-997247

ABSTRACT

Objective To analyze the RNA binding protein of Toxoplasma gondii (TgDDX39) using bioinformatics technology, and to evaluate the immunogenicity of TgDDX39, so as to provide insights into development of toxoplasmosis vaccines. Methods The amino acid sequences of TgDDX39 were retrieved from the ToxoDB database, and the physicochemical properties, transmembrane structure domain, signal peptide sites, post-translational modification sites, coils, secondary and tertiary structures, hydrophobicity, and antigenic epitopes of the TgDDX39 protein were predicted using online bioinformatics tools, incluiding ProtParam, TMHMM 2.0, SignalP 5.0, NetPhos 3.1, COILS, SOPMA, Phyre2, ProtScale, ABCpred, SYFPEITHI and DNA-STAR. Results TgDDX39 protein was predicted to be an unstable hydrophilic protein with the molecular formula of C2173H3458N598O661S18, which contained 434 amino acids and had an estimated molecular weight of 49.1 kDa and a theoretical isoelectric point of 5.55. The protein was predicted to have an extremely low possibility of signal peptides, without transmembrane regions, and contain 27 phosphorylation sites. The β turn and random coils accounted for 39.63% of the secondary structure of the TgDDX39 protein, and a coiled helix tended to produce in one site. In addition, the TgDDX39 protein contained multiple B and T cell antigenic epitopes. Conclusions Bioinformatics analyses predict that TgDDX39 protein has high immunogenicity and contains multiple antigenic epitopes. TgDDX39 protein is a potential candidate antigen for vaccine development.

SELECTION OF CITATIONS
SEARCH DETAIL